Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 8: 574360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937352

RESUMO

Chronic thrombo-embolic pulmonary hypertension (CTEPH) develops in a subset of patients after acute pulmonary embolism. In CTEPH, pulmonary vascular resistance, which is initially elevated due to the obstructions in the larger pulmonary arteries, is further increased by pulmonary microvascular remodeling. The increased afterload of the right ventricle (RV) leads to RV dilation and hypertrophy. This RV remodeling predisposes to arrhythmogenesis and RV failure. Yet, mechanisms involved in pulmonary microvascular remodeling, processes underlying the RV structural and functional adaptability in CTEPH as well as determinants of the susceptibility to arrhythmias such as atrial fibrillation in the context of CTEPH remain incompletely understood. Several large animal models with critical clinical features of human CTEPH and subsequent RV remodeling have relatively recently been developed in swine, sheep, and dogs. In this review we will discuss the current knowledge on the processes underlying development and progression of CTEPH, and on how animal models can help enlarge understanding of these processes.

2.
J Clin Med ; 8(8)2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31409013

RESUMO

Pulmonary hypertension (PH) as a result of pulmonary vein stenosis (PVS) is extremely difficult to treat. The ideal therapy should not target the high-pressure/low-flow (HP/LF) vasculature that drains into stenotic veins, but only the high-pressure/high-flow (HP/HF) vasculature draining into unaffected pulmonary veins, reducing vascular resistance and pressure without risk of pulmonary oedema. We aimed to assess the activity of the nitric oxide (NO) pathway in PVS during the development of PH, and investigate whether interventions in the NO pathway differentially affect vasodilation in the HP/HF vs. HP/LF territories. Swine underwent pulmonary vein banding (PVB; n = 7) or sham surgery (n = 6) and were chronically instrumented to assess progression of PH. Pulmonary sensitivity to exogenous NO (sodium nitroprusside, SNP) and the contribution of endogenous NO were assessed bi-weekly. The pulmonary vasodilator response to phosphodiesterase-5 (PDE5) inhibition was assessed 12 weeks after PVB or sham surgery. After sacrifice, 12 weeks post-surgery, interventions in the NO pathway on pulmonary small arteries isolated from HP/LF and HP/HF territories were further investigated. There were no differences in the in vivo pulmonary vasodilator response to SNP and the pulmonary vasoconstrictor response to endothelial nitric oxide synthase (eNOS) inhibition up to 8 weeks after PVB as compared to the sham group. However, at 10 and 12 weeks post-PVB, the in vivo pulmonary vasodilation in response to SNP was larger in the PVB group. Similarly, the vasoconstriction to eNOS inhibition was larger in the PVB group, particularly during exercise, while pulmonary vasodilation in response to PDE5 inhibition was larger in the PVB group both at rest and during exercise. In isolated pulmonary small arteries, sensitivity to NO donor SNP was similar in PVB vs. sham groups irrespective of HP/LF and HP/HF, while sensitivity to the PDE5 inhibitor sildenafil was lower in PVB HP/HF and sensitivity to bradykinin was lower in PVB HP/LF. In conclusion, both NO availability and sensitivity were increased in the PVB group. The increased nitric oxide sensitivity was not the result of a decreased PDE5 activity, as PDE5 activity was even increased. Some vasodilators differentially effect HP/HF vs. HP/LF vasculature.

3.
Am J Physiol Heart Circ Physiol ; 317(4): H840-H850, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31398061

RESUMO

Assessing right ventricular (RV) functional reserve is important for determining clinical status and prognosis in patients with pulmonary hypertension (PH). In this study, we aimed to establish RV oxygen (O2) delivery as a determinant for RV functional reserve during exercise in swine with chronic PH. Chronic PH was induced by pulmonary vein banding (PVB), with sham operation serving as control. RV function and RV O2 delivery were measured over time in chronically instrumented swine, up to 12 wk after PVB at rest and during exercise. At rest, RV afterload (pulmonary artery pressure and arterial elastance) and contractility (Ees and dP/dtmax) were higher in PH compared with control with preserved cardiac index and RV O2 delivery. However, RV functional reserve, as measured by the exercise-induced relative change (Δ) in cardiac index, dP/dtmax, and end-systolic elastance (Ees), was decreased in PH, and RV pulmonary arterial coupling was lower both at rest and during exercise in PH. Furthermore, the increase in RV O2 delivery was attenuated in PH during exercise principally due to a lower systolic coronary blood flow in combination with an attenuated increase in aorta pressure while arterial O2 content was not significantly altered in PH. Moreover, RV O2 delivery reserve correlated with RV functional reserve, Δcardiac index (r2 = 0.85), ΔdP/dtmax (r2 = 0.49), and ΔEes (r2 = 0.70), all P < 0.05. The inability to sufficiently increase RV O2 supply to meet the increased O2 demand during exercise is principally due to the reduced RV perfusion relative to healthy control values and likely contributes to impaired RV contractile function and thereby to the limited exercise capacity that is commonly observed in patients with PH.NEW & NOTEWORTHY Impaired right ventricular (RV) O2 delivery reserve is associated with reduced RV functional reserve during exercise in a swine model of pulmonary hypertension (PH) induced by pulmonary vein banding. Our data suggest that RV function and exercise capacity might be improved by improving RV O2 delivery.


Assuntos
Tolerância ao Exercício , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Consumo de Oxigênio , Oxigênio/sangue , Esforço Físico , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Fatores Etários , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Ventrículos do Coração/metabolismo , Hipertensão Pulmonar/sangue , Masculino , Sus scrofa , Disfunção Ventricular Direita/sangue , Pressão Ventricular
4.
J Physiol ; 597(17): 4465-4480, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31194256

RESUMO

KEY POINTS: Right ventricle (RV) function is the most important determinant of survival and quality of life in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The changes in right and left ventricle gene expression that contribute to ventricular remodelling are incompletely investigated. RV remodelling in our CTEPH swine model is associated with increased expression of the genes involved in inflammation (TGFß), oxidative stress (ROCK2, NOX1 and NOX4), and apoptosis (BCL2 and caspase-3). Alterations in ROCK2 expression correlated inversely with RV contractile reserve during exercise. Since ROCK2 has been shown to be involved in hypertrophy, oxidative stress, fibrosis and endothelial dysfunction, ROCK2 inhibition may present a viable therapeutic target in CTEPH. ABSTRACT: Right ventricle (RV) function is the most important determinant of survival and quality of life in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The present study investigated whether the increased cardiac afterload is associated with (i) cardiac remodelling and hypertrophic signalling; (ii) changes in angiogenic factors and capillary density; and (iii) inflammatory changes associated with oxidative stress and interstitial fibrosis. CTEPH was induced in eight chronically instrumented swine by chronic nitric oxide synthase inhibition and up to five weekly pulmonary embolizations. Nine healthy swine served as a control. After 9 weeks, RV function was assessed by single beat analysis of RV-pulmonary artery (PA) coupling at rest and during exercise, as well as by cardiac magnetic resonance imaging. Subsequently, the heart was excised and RV and left ventricle (LV) tissues were processed for molecular and histological analyses. Swine with CTEPH exhibited significant RV hypertrophy in response to the elevated PA pressure. RV-PA coupling was significantly reduced, correlated inversely with pulmonary vascular resistance and did not increase during exercise in CTEPH swine. Expression of genes associated with hypertrophy (BNP), inflammation (TGFß), oxidative stress (ROCK2, NOX1 and NOX4), apoptosis (BCL2 and caspase-3) and angiogenesis (VEGFA) were increased in the RV of CTEPH swine and correlated inversely with RV-PA coupling during exercise. In the LV, only significant changes in ROCK2 gene-expression occurred. In conclusion, RV remodelling in our CTEPH swine model is associated with increased expression of genes involved in inflammation and oxidative stress, suggesting that these processes contribute to RV remodelling and dysfunction in CTEPH and hence represent potential therapeutic targets.


Assuntos
Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Imageamento por Ressonância Magnética/métodos , Masculino , Embolia Pulmonar/fisiopatologia , Qualidade de Vida , Suínos , Resistência Vascular/fisiologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/fisiologia
5.
Int J Cardiovasc Imaging ; 35(6): 1111-1118, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30963352

RESUMO

The purpose of this study was to compare invasively measured aorta flow with 2D phase contrast flow and 4D flow measurements by cardiovascular magnetic resonance (CMR) imaging in a large animal model. Nine swine (mean weight 63 ± 4 kg) were included in the study. 4D flow CMR exams were performed on a 1.5T MRI scanner. Flow measurements were performed on 4D flow images at the aortic valve level, in the ascending aorta, and main pulmonary artery. Simultaneously, flow was measured using an invasive flow probe, placed around the ascending aorta. Additionally, standard 2D phase contrast flow and 2D left ventricular (LV) volumetric data were used for comparison. The correlations of cardiac output (CO) between the invasive flow probe, and CMR modalities were strong to very strong. CO measured by 4D flow CMR correlated better with the CO measured by the invasive flow probe than 2D flow CMR flow and volumetric LV data (4D flow CMR: Spearman's rho = 0.86 at the aortic valve level and 0.90 at the ascending aorta level; 2D flow CMR: 0.67 at aortic valve level; LV measurements: 0.77). In addition, there tended to be a correlation between mean pulmonary artery flow and aorta flow with 4D flow (Spearman's rho = 0.65, P = 0.07), which was absent in measurements obtained with 2D flow CMR (Spearman's rho = 0.40, P = 0.33). This study shows that aorta flow can be accurately measured by 4D flow CMR compared to simultaneously measured invasive flow. This helps to further validate the quantitative reliability of this technique.


Assuntos
Aorta/diagnóstico por imagem , Cateterismo Cardíaco , Hemodinâmica , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Artéria Pulmonar/diagnóstico por imagem , Circulação Pulmonar , Animais , Aorta/fisiologia , Velocidade do Fluxo Sanguíneo , Cateterismo Cardíaco/instrumentação , Cateteres Cardíacos , Humanos , Interpretação de Imagem Assistida por Computador , Modelos Animais , Valor Preditivo dos Testes , Artéria Pulmonar/fisiologia , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Sus scrofa , Fatores de Tempo , Transdutores de Pressão
6.
J Physiol ; 597(4): 1157-1173, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29799120

RESUMO

KEY POINTS: Passive, isolated post-capillary pulmonary hypertension (PH) secondary to left heart disease may progress to combined pre- and post-capillary or 'active' PH This 'activation' of post-capillary PH significantly increases morbidity and mortality, and is still incompletely understood. In this study, pulmonary vein banding gradually produced post-capillary PH with structural and functional microvascular remodelling in swine. Ten weeks after banding, the pulmonary endothelin pathway was upregulated, likely contributing to pre-capillary aspects in the initially isolated post-capillary PH. Inhibition of the endothelin pathway could potentially stop the progression of early stage post-capillary PH. ABSTRACT: Passive, isolated post-capillary pulmonary hypertension (IpcPH) secondary to left heart disease may progress to combined pre- and post-capillary or 'active' PH (CpcPH) characterized by chronic pulmonary vascular constriction and remodelling. The mechanisms underlying this 'activation' of passive pulmonary hypertension (PH) remain incompletely understood. Here we investigated the role of the vasoconstrictor endothelin-1 (ET) in the progression from IpcPH to CpcPH in a swine model for post-capillary PH. Swine underwent pulmonary vein banding (PVB; n = 7) or sham-surgery (Sham; n = 6) and were chronically instrumented 4 weeks later. Haemodynamics were assessed for 8 weeks, at rest and during exercise, before and after administration of the ET receptor antagonist tezosentan. After sacrifice, the pulmonary vasculature was investigated by histology, RT-qPCR and myograph experiments. Pulmonary arterial pressure and resistance increased significantly over time. mRNA expression of prepro-endothelin-1 and endothelin converting enzyme-1 in the lung was increased, while ETA expression was unchanged and ETB expression was downregulated. This was associated with increased plasma ET levels from week 10 onward and a more pronounced vasodilatation to in vivo administration of tezosentan at rest and during exercise. Myograph experiments showed decreased endothelium-dependent vasodilatation to Substance P and increased vasoconstriction to KCl in PVB swine consistent with increased muscularization observed with histology. Moreover, maximal vasoconstriction to ET was increased whereas ET sensitivity was decreased. In conclusion, PVB swine gradually developed PH with structural and functional vascular remodelling. From week 10 onward, the pulmonary ET pathway was upregulated, likely contributing to pre-capillary activation of the initially isolated post-capillary PH. Inhibition of the ET pathway could thus potentially provide a pharmacotherapeutic target for early stage post-capillary PH.


Assuntos
Endotelinas/metabolismo , Hipertensão Pulmonar/metabolismo , Microvasos/metabolismo , Animais , Regulação para Baixo , Endotelinas/genética , Endotélio Vascular/metabolismo , Feminino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Pulmão/irrigação sanguínea , Masculino , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Piridinas/farmacologia , Suínos , Tetrazóis/farmacologia , Vasodilatadores/farmacologia , Disfunção Ventricular Esquerda/complicações
7.
Am J Physiol Lung Cell Mol Physiol ; 315(6): L951-L964, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30260284

RESUMO

Pulmonary vascular remodeling in pulmonary arterial hypertension involves perturbations in the nitric oxide (NO) and endothelin-1 (ET-1) pathways. However, the implications of pulmonary vascular remodeling and these pathways remain unclear in chronic thrombo-embolic pulmonary hypertension (CTEPH). The objective of the present study was to characterize changes in microvascular morphology and function, focussing on the ET-1 and NO pathways, in a CTEPH swine model. Swine were chronically instrumented and received up to five pulmonary embolizations by microsphere infusion, whereas endothelial dysfunction was induced by daily administration of the endothelial NO synthase inhibitor Nω-nitro-l-arginine methyl ester until 2 wk before the end of study. Swine were subjected to exercise, and the pulmonary vasculature was investigated by hemodynamic, histological, quantitative PCR, and myograph experiments. In swine with CTEPH, the increased right-ventricular afterload, decreased cardiac index, and mild ventilation-perfusion-mismatch were exacerbated during exercise. Pulmonary microvascular remodeling was evidenced by increased muscularization, which was accompanied by an increased maximal vasoconstriction. Although ET-1-induced vasoconstriction was increased in CTEPH pulmonary small arteries, the ET-1 sensitivity was decreased. Moreover, the contribution of the ETA receptor to ET-1 vasoconstriction was increased, whereas the contribution of the ETB receptor was decreased and the contribution of Rho-kinase was lost. A reduction in endogenous NO production was compensated in part by a decreased phosphodiesterase 5 (PDE5) activity resulting in an apparent increased NO sensitivity in CTEPH pulmonary small arteries. These findings suggest that pulmonary microvascular remodeling with a reduced activity of PDE5 and Rho-kinase may contribute to the lack of therapeutic efficacy of PDE5 inhibitors and Rho-kinase inhibitors in CTEPH.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Pulmão/fisiopatologia , Microvasos/fisiopatologia , Embolia Pulmonar/fisiopatologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Endotelina-1/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Microvasos/metabolismo , Óxido Nítrico/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar/fisiologia , Embolia Pulmonar/metabolismo , Suínos , Vasoconstrição/fisiologia , Quinases Associadas a rho/metabolismo
8.
Cardiovasc Res ; 114(7): 954-964, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432575

RESUMO

Aims: More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities. Methods and results: DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM + HC + HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure-volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained. Conclusions: The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction.


Assuntos
Doença da Artéria Coronariana/etiologia , Circulação Coronária , Vasos Coronários/fisiopatologia , Diabetes Mellitus Experimental/complicações , Hipercolesterolemia/complicações , Hipertensão Renovascular/complicações , Microcirculação , Miocárdio/metabolismo , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Animais , Comorbidade , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diástole , Feminino , Fibrose , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatologia , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/fisiopatologia , Miocárdio/patologia , Estresse Oxidativo , Fatores de Risco , Volume Sistólico , Sus scrofa , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
9.
Am J Physiol Heart Circ Physiol ; 314(3): H627-H642, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167118

RESUMO

Chronic thromboembolic pulmonary hypertension (CTEPH) develops in 4% of patients after pulmonary embolism and is accompanied by an impaired exercise tolerance, which is ascribed to the increased right ventricular (RV) afterload in combination with a ventilation/perfusion (V/Q) mismatch in the lungs. The present study aimed to investigate changes in arterial Po2 and hemodynamics in response to graded treadmill exercise during development and progression of CTEPH in a novel swine model. Swine were chronically instrumented and received multiple pulmonary embolisms by 1) microsphere infusion (Spheres) over 5 wk, 2) endothelial dysfunction by administration of the endothelial nitric oxide synthase inhibitor Nω-nitro-l-arginine methyl ester (L-NAME) for 7 wk, 3) combined pulmonary embolisms and endothelial dysfunction (L-NAME + Spheres), or 4) served as sham-operated controls (sham). After a 9 wk followup, embolization combined with endothelial dysfunction resulted in CTEPH, as evidenced by mean pulmonary artery pressures of 39.5 ± 5.1 vs. 19.1 ± 1.5 mmHg (Spheres, P < 0.001), 22.7 ± 2.0 mmHg (L-NAME, P < 0.001), and 20.1 ± 1.5 mmHg (sham, P < 0.001), and a decrease in arterial Po2 that was exacerbated during exercise, indicating V/Q mismatch. RV dysfunction was present after 5 wk of embolization, both at rest (trend toward increased RV end-systolic lumen area, P = 0.085, and decreased stroke volume index, P = 0.042) and during exercise (decreased stroke volume index vs. control, P = 0.040). With sustained pulmonary hypertension, RV hypertrophy (Fulton index P = 0.022) improved RV function at rest and during exercise, but this improvement was insufficient in CTEPH swine to result in an exercise-induced increase in cardiac index. In conclusion, embolization in combination with endothelial dysfunction results in CTEPH in swine. Exercise increased RV afterload, exacerbated the V/Q mismatch, and unmasked RV dysfunction. NEW & NOTEWORTHY Here, we present the first double-hit chronic thromboembolic pulmonary hypertension swine model. We show that embolization as well as endothelial dysfunction is required to induce sustained pulmonary hypertension, which is accompanied by altered exercise hemodynamics and an exacerbated ventilation/perfusion mismatch during exercise.


Assuntos
Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Esforço Físico , Artéria Pulmonar/fisiopatologia , Embolia Pulmonar/fisiopatologia , Remodelação Vascular , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita , Remodelação Ventricular , Animais , Doença Crônica , Modelos Animais de Doenças , Progressão da Doença , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Masculino , Artéria Pulmonar/metabolismo , Embolia Pulmonar/complicações , Embolia Pulmonar/metabolismo , Sus scrofa , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/metabolismo
11.
Neuromuscul Disord ; 27(1): 83-89, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27890461

RESUMO

Nemaline myopathy is among the most common non-dystrophic congenital myopathies, and is characterized by the presence of nemaline rods in skeletal muscles fibers, general muscle weakness, and hypotonia. Although respiratory failure is the main cause of death in nemaline myopathy, only little is known regarding the contractile strength of the diaphragm, the main muscle of inspiration. To investigate diaphragm contractility, in the present study we took advantage of a mouse model for nebulin-based nemaline myopathy that we recently developed. In this mouse model, exon 55 of Neb is deleted (NebΔExon55), a mutation frequently found in patients. Diaphragm contractility was determined in permeabilized muscle fibers and was compared to the contractility of permeabilized fibers from three peripheral skeletal muscles: soleus, extensor digitorum longus, and gastrocnemius. The force generating capacity of diaphragm muscle fibers of NebΔExon55 mice was reduced to 25% of wildtype levels, indicating severe contractile weakness. The contractile weakness of diaphragm fibers was more pronounced than that observed in soleus muscle, but not more pronounced than that observed in extensor digitorum longus and gastrocnemius muscles. The reduced muscle contractility was at least partly caused by changes in cross-bridge cycling kinetics which reduced the number of bound cross-bridges. The severe diaphragm weakness likely contributes to the development of respiratory failure in NebΔExon55 mice and might explain their early, postnatal death.


Assuntos
Fibras Musculares Esqueléticas , Proteínas Musculares/genética , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiopatologia , Miopatias da Nemalina/fisiopatologia , Insuficiência Respiratória/fisiopatologia , Animais , Diafragma/fisiopatologia , Modelos Animais de Doenças , Camundongos , Debilidade Muscular/genética , Miopatias da Nemalina/genética , Insuficiência Respiratória/genética
12.
J Vis Exp ; (108): e53772, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26889804

RESUMO

This protocol describes the surgical procedure to chronically instrument swine and the procedure to exercise swine on a motor-driven treadmill. Early cardiopulmonary dysfunction is difficult to diagnose, particularly in animal models, as cardiopulmonary function is often measured invasively, requiring anesthesia. As many anesthetic agents are cardiodepressive, subtle changes in cardiovascular function may be masked. In contrast, chronic instrumentation allows for measurement of cardiopulmonary function in the awake state, so that measurements can be obtained under quiet resting conditions, without the effects of anesthesia and acute surgical trauma. Furthermore, when animals are properly trained, measurements can also be obtained during graded treadmill exercise. Flow probes are placed around the aorta or pulmonary artery for measurement of cardiac output and around the left anterior descending coronary artery for measurement of coronary blood flow. Fluid-filled catheters are implanted in the aorta, pulmonary artery, left atrium, left ventricle and right ventricle for pressure measurement and blood sampling. In addition, a 20 G catheter is positioned in the anterior interventricular vein to allow coronary venous blood sampling. After a week of recovery, swine are placed on a motor-driven treadmill, the catheters are connected to pressure and flow meters, and swine are subjected to a five-stage progressive exercise protocol, with each stage lasting 3 min. Hemodynamic signals are continuously recorded and blood samples are taken during the last 30 sec of each exercise stage. The major advantage of studying chronically instrumented animals is that it allows serial assessment of cardiopulmonary function, not only at rest but also during physical stress such as exercise. Moreover, cardiopulmonary function can be assessed repeatedly during disease development and during chronic treatment, thereby increasing statistical power and hence limiting the number of animals required for a study.


Assuntos
Cateteres Cardíacos , Doença da Artéria Coronariana/diagnóstico , Circulação Coronária/fisiologia , Vasos Coronários/fisiologia , Teste de Esforço/métodos , Condicionamento Físico Animal/fisiologia , Animais , Doença da Artéria Coronariana/fisiopatologia , Modelos Animais de Doenças , Seguimentos , Masculino , Suínos , Fatores de Tempo
13.
Cardiovasc Res ; 99(3): 432-41, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23674513

RESUMO

AIMS: Familial hypertrophic cardiomyopathy (HCM), frequently caused by sarcomeric gene mutations, is characterized by cellular dysfunction and asymmetric left-ventricular (LV) hypertrophy. We studied whether cellular dysfunction is due to an intrinsic sarcomere defect or cardiomyocyte remodelling. METHODS AND RESULTS: Cardiac samples from 43 sarcomere mutation-positive patients (HCMmut: mutations in thick (MYBPC3, MYH7) and thin (TPM1, TNNI3, TNNT2) myofilament genes) were compared with 14 sarcomere mutation-negative patients (HCMsmn), eight patients with secondary LV hypertrophy due to aortic stenosis (LVHao) and 13 donors. Force measurements in single membrane-permeabilized cardiomyocytes revealed significantly lower maximal force generating capacity (Fmax) in HCMmut (21 ± 1 kN/m²) and HCMsmn (26 ± 3 kN/m²) compared with donor (36 ± 2 kN/m²). Cardiomyocyte remodelling was more severe in HCMmut compared with HCMsmn based on significantly lower myofibril density (49 ± 2 vs. 63 ± 5%) and significantly higher cardiomyocyte area (915 ± 15 vs. 612 ± 11 µm²). Low Fmax in MYBPC3mut, TNNI3mut, HCMsmn, and LVHao was normalized to donor values after correction for myofibril density. However, Fmax was significantly lower in MYH7mut, TPM1mut, and TNNT2mut even after correction for myofibril density. In accordance, measurements in single myofibrils showed very low Fmax in MYH7mut, TPM1mut, and TNNT2mut compared with donor (respectively, 73 ± 3, 70 ± 7, 83 ± 6, and 113 ± 5 kN/m²). In addition, force was lower in MYH7mut cardiomyocytes compared with MYBPC3mut, HCMsmn, and donor at submaximal [Ca²âº]. CONCLUSION: Low cardiomyocyte Fmax in HCM patients is largely explained by hypertrophy and reduced myofibril density. MYH7 mutations reduce force generating capacity of sarcomeres at maximal and submaximal [Ca²âº]. These hypocontractile sarcomeres may represent the primary abnormality in patients with MYH7 mutations.


Assuntos
Miosinas Cardíacas/genética , Miosinas Cardíacas/fisiologia , Cardiomiopatia Hipertrófica Familiar/genética , Cardiomiopatia Hipertrófica Familiar/fisiopatologia , Mutação , Contração Miocárdica/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/fisiologia , Adulto , Idoso , Cálcio/metabolismo , Cardiomiopatia Hipertrófica Familiar/patologia , Crescimento Celular , Feminino , Fibrose , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Miofibrilas/patologia , Sarcômeros/patologia , Sarcômeros/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...